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Abstract—This paper presents a comparative analysis of few-
shot learning models, focusing on the evaluation of Siamese
and Prototypical Network architectures on the Omniglot dataset.
Furthermore, we introduce and evaluate our novel model, FAL-
CONNET (Few-Shot Adversarial Learning and Classification
Network). We evaluate the performance of all the models
against adversarial attacks, specifically PGD (Projected Gra-
dient Descent) and FGSM (Fast Gradient Sign Method), and
explore defense mechanisms to enhance model resilience. The
Prototypical Network was configured for a 60-way 5-shot 5-
query task, as was FalconNet. The Siamese Network followed
a pairwise 5-shot 5-query setup. Data augmentation techniques
were applied to improve generalization across all models. To
counter adversarial impact, we implemented adversarial train-
ing, defensive distillation, and their combination. Experimental
results demonstrate that FalconNet, incorporating these defense
strategies, significantly enhances model accuracy and stability
under adversarial conditions, outperforming both the standard
Siamese and Prototypical Networks.

Index Terms—Few-shot learning, Siamese Networks, Proto-
typical Networks, Omniglot dataset, adversarial attacks, PGD,
FGSM, adversarial training, defensive distillation

I. INTRODUCTION

Few-shot learning [1] has emerged as a critical research
direction in machine learning, addressing the challenge of
learning from limited labeled examples [2]. This technique
is particularly useful in real-world applications where data is
very limited, such as medical diagnosis, rare object recog-
nition and security systems [3] like signature matching or
facial recognition where data is often limited. Among various
approaches, Siamese Networks [4] and Prototypical Networks
[5] have demonstrated remarkable success in learning robust
representations from minimal data. However, recent studies
reveal that these models are highly vulnerable to adversarial
attacks [6] [7], where perturbations in the images can signif-
icantly degrade their performance posing a serious limitation
for real-world applications and uses.
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To evaluate this vulnerability, we use the Omniglot dataset
[8], a widely adopted benchmark containing 1,623 handwritten
characters across multiple alphabets. Following standard few-
shot learning protocols, we configure the Prototypical Network
for a 60-way 5-shot 5-query task and the Siamese Network
for pairwise 5-shot 5-query classification. Additionally, we
employ data augmentation techniques [9] [10] such as 90°,
180°, and 270° image rotations and Horizontal and Vertical
image flips to enhance model generalization.

Our work makes three key contributions to robust few-shot
learning:

o Adversarial Vulnerability Analysis — We analyze the
impact of Projected Gradient Descent (PGD) [11] [12]
and Fast Gradient Sign Method (FGSM) [13] [14] at-
tacks on both network architectures, demonstrating their
susceptibility to adversarial perturbations.

o Defensive Strategies — We evaluate adversarial training
[15] [16], defensive distillation, and their combination
to mitigate adversarial effects, showing that these ap-
proaches significantly improve model robustness.

o Empirical Validation of Trade-offs — We investigate
the balance between standard accuracy and adversarial
robustness [17], providing insights into the challenges of
defending few-shot learning models.

Our builds upon standard few-shot evaluation protocols
while increasing the number of classes making it increasingly
challenging for the models to learn and also incorporating
adversarial defense strategies. Our findings help us understand
the drawbacks and advantages between few-shot learning and
adversarial robustness research, offering practical insights for
developing more resilient and trustworthy few-shot learning
systems.



II. LITERATURE REVIEW

A. Foundations of Few-Shot Learning

Few-shot learning (FSL) addresses the challenge of learn-
ing from limited data by enabling models to generalize
with minimal supervision. Unlike traditional deep learning,
which requires extensive datasets, FSL methods leverage meta-
learning, transfer learning, and metric-based learning to im-
prove adaptability and stability [18]. Recent studies categorize
FSL into three main approaches: optimization-based, metric-
based, and memory-based methods. Metric-based models, such
as Prototypical Networks and Siamese Networks, learn feature
embeddings that facilitate classification with minimal exam-
ples. Additionally, data augmentation techniques, including
transformations and synthetic data generation, enhance gen-
eralization in low-data regimes.

Despite progress, challenges remain in improving FSL ro-
bustness, scalability, and generalization, particularly under ad-
versarial conditions. Ongoing research explores new strategies
to strengthen FSL models for real-world deployment [19].

B. Adversarial Robustness in Classification Models

Deep learning models are highly effective but remain
susceptible to adversarial perturbations—small, imperceptible
modifications that can significantly degrade model perfor-
mance [20]. Research has categorized adversarial attacks and
defenses into three primary strategies: adversarial (re)training,
gradient-based regularization, and certified robustness meth-
ods [21]. Among these, adversarial training, which incorpo-
rates adversarial examples during model training, is a widely
adopted defense but often comes with trade-offs between
robustness and generalization.

In the context of few-shot learning, existing approaches
assume clean, well-labeled data. However, real-world datasets
often contain outliers, making robust few-shot learning (RFSL)
a crucial research direction. Recent studies introduce novel
techniques to mitigate representation and label outliers, ensur-
ing better model reliability in practical settings. These findings
highlight the need for tailored adversarial defenses for few-
shot learning architectures [22].

C. Defense Mechanisms and Their Limitations

Adversarial defenses primarily focus on mitigating vulner-
abilities in deep learning models. Adversarial training im-
proves performance by removing small perturbations in hidden
representations, yet it remains computationally expensive and
struggles to generalize against unseen attacks [23]. Defensive
distillation reduces attack success by modifying output dis-
tributions, but adaptive adversaries can still bypass it [24].
Another approach stabilizes neuron sensitivities to enhance
robustness, though its effectiveness varies across architec-
tures [25]. While hybrid strategies combining these defenses
show promise, they often introduce accuracy trade-offs and
increased computational costs.

D. Critical Gaps in Current Research

Despite advances in few-shot learning and adversarial ro-
bustness, several key gaps remain:

o Adversarial Robustness in Few-Shot Models: Few-
shot learning systems have received limited attention in
adversarial contexts. Our work focuses on enhancing
these models to handle adversarial attacks, crucial for
security and medical applications.

o Scalability Limitations: Existing research often limits
few-shot learning to small classification tasks like 20-
way. Our approach expands this to 60-way through ad-
vanced data augmentation, addressing scalability chal-
lenges.

o Hybrid Defense Mechanisms: Few studies combine de-
fenses like adversarial training and defensive distillation
in few-shot models. We show that these hybrid defenses
improve robustness without compromising performance.

o Real-World Application: While few-shot learning mod-
els often use standard datasets, we aim to apply these
models to security-sensitive and medical fields, where few
samples per class are common.

III. METHODOLOGY

In this section, we detail the methodology employed in our
experiments, including the dataset and pre-processing steps,
model architectures, training procedures, adversarial attack
implementations, and defense mechanisms. The experiments
were conducted using Python, with TensorFlow Keras and
PyTorch for model development. The computational resources
consisted of GPUs provided by Google Colab and Kaggle.

A. Dataset and Preprocessing

We utilized the Omniglot dataset, a standard benchmark for
few-shot learning, which includes a large number of characters
from various alphabets. The dataset was divided into support
and query sets, as well as training and testing sets. An example
from the Omniglot dataset’s is shown in Figure 1 it consists
of a single alphabet written with different strokes from a
particular language.

Original: 0

4 af A/ 3 AT

Fig. 1. Sample of Omniglot Alphabet Characters

Original: 0 Original: 0 Original: 0 Original: 0

Preprocessing involved normalizing and resizing the images
to specific dimensions required by the model architectures.
Specifically, the images were resized to 105 x 105 pixels for
the Siamese network and 28 x 28 pixels for the Prototypical
network.

Data augmentation techniques were applied during training.
These techniques included rotations of 90, 180, and 270
degrees, as well as horizontal and vertical flips.



B. Model Architectures

We implemented two types of models: a Siamese network
and a Prototypical network, each designed for few-shot learn-
ing tasks.

1) Siamese Network: The Siamese network consists of two
identical sub-networks that share weights. Each sub-network
processes one image from a pair, and the outputs are compared
to determine if the images belong to the same class.

The base network, which forms the shared sub-network,
comprises the following layers:

« Input layer: Accepts images of size 105 x 105 pixels.

« Convolutional layers: Four convolutional layers with 32,
64, 128, and 256 filters, respectively, each with a kernel
size of 3 x 3, ReLU activation, and ’same’ padding.

o Batch normalization: Batch normalization layers after
each convolutional layer.

« Max pooling: Max pooling layers with a pool size of 2 x 2
after each batch normalization.

e Dropout: Dropout layers with a rate of 0.25 after each
max pooling.

« Flatten layer: Flattens the output of the last convolutional
layer.

e Dense layers: Two dense layers with 512 and 256 units,
respectively. The first dense layer uses ReLU activation,
and the second uses sigmoid activation to produce the
embedding.

The similarity between the embeddings of the two input
images is computed using the Euclidean distance. This dis-
tance is then passed through a sigmoid activation function to
produce a binary output, indicating whether the images belong
to the same class or different classes.

2) Prototypical Network: The Prototypical network embeds
input images into a feature space and computes class proto-
types by averaging the embedded vectors of support images
for each class. The classification of query images is based on
the Euclidean distance to the class prototypes.

The encoder network, which embeds the input images,
comprises the following layers:

o Convolutional blocks: Four convolutional blocks, each
consisting of a convolutional layer with 64 filters, kernel
size 3 x 3, and padding, followed by batch normalization,
ReLU activation, and max pooling with a pool size of
2 x 2.

« Flatten layer: Flattens the output of the last convolutional
block.

The Prototypical network uses Euclidean distance as a
metric of similarity to calculate the distance between the em-
bedded query images and the class prototypes. The logarithmic
of Softmax function is then used to compute the probabilities
for each class, and the final classification is based on the class
with the highest probability.

C. Training Procedure

The models were trained using the Adam optimization
algorithm with a batch size of 32. The training continued

for 15 epochs, and convergence was determined when there
was no significant increase in validation accuracy, indicating
a plateau.

D. Adversarial Attack Implementation

We implemented two types of adversarial attacks: Projected
Gradient Descent (PGD) and Fast Gradient Sign Method
(FGSM).

For the PGD attack, we used the following parameters:
epsilon = 0.5, alpha = 0.5, and 10 iterations.

For the FGSM attack, we used an epsilon value of 0.5.

Both attacks were implemented as untargeted attacks, aim-
ing to degrade the model’s performance without targeting
specific misclassifications.

4 aJa /S af AT

Fig. 2. Omniglot Character Attacked with FGSM

FGSM Attack: 0  FGSM Attack: 0  FGSM Attack: 0 FGSM Attack: 0

Figure 2 shows an Omniglot character that has been attacked
using the Fast Gradient Sign Method (FGSM).

Fig. 3. Perturbation Introduced by FGSM Attack

Figure 3 visualizes the perturbation introduced by the
FGSM attack on the Omniglot character.
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Fig. 4. Omniglot Character Attacked with PGD

PGD Attack: 0 PGD Attack: 0 PGD Attack: 0 PGD Attack: 0

Figure 4 shows an Omniglot character that has been attacked
using the Projected Gradient Descent (PGD) method.
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Fig. 5. Perturbation Introduced by PGD Attack

Figure 5 visualizes the perturbation introduced by the PGD
attack on the Omniglot character.



The perturbation visualizations use color coding to represent
the magnitude and direction of pixel changes:

o Red: Indicates a positive change in pixel value (increased
intensity).

o Blue: Indicates a negative change in pixel value (de-
creased intensity).

« Orange: Represents intermediate changes in pixel values.

The intensity of the colors corresponds to the magnitude
of the perturbation. Brighter colors signify larger pixel value
changes, while darker colors indicate smaller changes. This
visualization aids in understanding the nature and extent of
the adversarial perturbations introduced by each attack.

E. Defense Mechanisms

We explored two defense mechanisms: Adversarial Training
(AT) and Defensive Distillation (DD), mentioned below is how
these two defense mechanisms work.

1) Adversarial Training (AT): Adversarial training involves
adding the training dataset with adversarial examples, forcing
the model to learn with such perturbations present in the
training stage itself. We generated adversarial examples using
the same attack methods (FGSM and PGD) as in the evaluation
50% from each, but with slightly weaker perturbations. This
was achieved by reducing the epsilon parameter for both
FGSM and PGD during the training phase from 0.5 to 0.3.

2) Defensive Distillation (DD): Defensive distillation is a
technique that transfers the knowledge from a teacher model
to a student model, making the student model less susceptible
to adversarial attacks. This is achieved by training the student
model on the soft labels produced by the teacher model, which
are less sensitive to small input perturbations.

We first trained a teacher model on the clean dataset. Then,
we generated soft labels by passing the training data through
the teacher model with a temperature parameter of 5.0. The
temperature parameter controls the smoothness of the soft
labels; a higher temperature results in smoother or softer
labels.

3) Combined Defense Mechanism: We considered the ben-
efits of both adversarial training and defensive distillation, we
implemented a combined defense mechanism. This involved
training the model in two stages.

1) Adversarial Training Stage: We first trained the model
using adversarial training, as described above.

2) Defensive Distillation Stage: After the adversarial train-
ing stage, we used the adversarially trained model as the
teacher model for defensive distillation. We generated
soft labels using this teacher model and trained a student
model on these soft labels.

This staged approach allowed us to first improve the model’s
performance against adversarial examples through adversarial
training and also smooth the model’s decision boundaries
using defensive distillation.

IV. RESULTS AND DISCUSSION
A. Analysis of Network Performance

As shown in Table II, the Prototypical network generally
achieved higher accuracy than the Siamese network. However,
it was more susceptible to PGD attacks. Specifically, the
Prototypical network’s accuracy dropped from 0.96 to 0.39
under PGD, with a corresponding loss increase from 0.11
to 2.31 (Table I). The Siamese network showed more stable
performance.

B. Impact of Adversarial Attacks

PGD attacks significantly reduced accuracy for both net-
works (Table II). Increased loss values (Table I) confirm the
attack’s disruptive impact, altering model representations. As
visualized in Figure 6, the PGD attack leads to a notable
decrease in accuracy across all models.

C. Effectiveness of Defense Mechanisms

Adpversarial training (AT) improved robustness, particularly
in training (Table I). For example, the Siamese network’s
PGD accuracy improved from 0.50 to 0.74 with AT. Defensive
distillation (DD) had mixed results. The AT+DD combination
generally performed best. The effectiveness of AT and the
mixed results of DD can also be observed in Figure 6.

D. Training vs. Test Performance

The Prototypical network showed a larger training-test gap,
indicating overfitting (Table I). The Siamese network demon-
strated better generalization.

V. CONCLUSION

In this study, we evaluated the robustness of Siamese and
Prototypical networks under adversarial attacks, specifically
PGD and FGSM. While the Prototypical network demon-
strated superior accuracy in clean data scenarios, it exhibited
a significant vulnerability to PGD attacks, experiencing a dra-
matic drop in performance. The Siamese network maintained
a more stable performance under adversarial perturbations.
We explored the effectiveness of adversarial training (AT)
and defensive distillation (DD) as defense mechanisms. The
combination of AT and DD generally provided the best overall
performance, highlighting the joint benefits of these defense
strategies. The Prototypical network showed a larger gap
between training and test performance, suggesting potential
overfitting, while the Siamese network exhibited better gener-
alization. These findings display the importance of considering
adversarial defenses in few-shot learning models.

VI. FUTURE SCOPE

This study opens several aspects for future research. Firstly,
exploring more advanced defense mechanisms, such as input
transformation techniques or certified defenses, could further
enhance the performance of these networks. Investigating the
impact of different attack parameters and exploring adaptive
attack strategies would provide a better understanding of
any model’s weak points. Secondly, extending this analysis



TABLE I

PERFORMANCE COMPARISON OF SIAMESE AND PROTOTYPICAL NETWORKS UNDER ADVERSARIAL ATTACKS

Network Model Accuracy Loss
No Attack PGD Attack FGSM Attack No Attack PGD Attack FGSM Attack

Base Model 0.82 0.50 0.50 5.78 6.90 6.50
AT Model 0.79 0.63 0.68 5.95 5.20 5.15
DD Model 0.80 0.48 0.58 5.82 7.24 6.30

Siamese AT + DD Model 0.77 0.68 0.69 6.05 4.80 5.10
Base Model 0.84 0.53 0.56 5.46 6.80 6.20
AT Model 0.82 0.74 0.74 5.60 4.90 4.70
DD Model 0.83 0.55 0.63 5.50 6.70 6.17
AT + DD Model 0.81 0.73 0.75 5.70 4.50 4.80
Base Model 0.96 0.39 0.45 0.11 2.31 1.74
AT Model 0.93 0.64 0.72 0.27 1.22 1.04
DD Model 0.94 0.32 0.57 0.15 2.32 1.71

Prototypical AT + DD Model 0.92 0.73 0.71 0.25 1.02 1.15
Base Model 0.98 0.96 0.97 0.08 0.30 0.25
AT Model 0.97 0.83 0.65 0.09 0.52 0.45
DD Model 0.98 0.62 0.74 0.07 0.52 0.55
AT + DD Model 0.97 0.83 0.89 0.10 0.68 0.63

Note: AT = Adversarial Training, DD = Defensive Distillation, AT + DD = Combination of Adversarial Training and Defensive Distillation.

TABLE I
KEY PERFORMANCE COMPARISON OF SIAMESE AND PROTOTYPICAL NETWORKS UNDER ADVERSARIAL ATTACKS (TEST SET)

Network No Attack Accuracy PGD Attack Accuracy FGSM Attack Accuracy
0.82 0.50 0.50
Siamese 0.79 0.63 0.68
0.80 0.48 0.58
AT + DD Model 0.77 0.68 0.69
0.96 0.39 0.45
Prototypical 0.93 0.64 0.72
0.94 0.32 0.57
AT + DD Model 0.92 0.73 0.71

Note: AT = Adversarial Training, DD = Defensive Distillation, AT + DD = Combination of Adversarial Training and Defensive Distillation.
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to larger and more complex datasets, as well as real-world
applications where data is found in all kinds of format and
is not available in abundance. Finally, investigating the in-
terpretability of these models under adversarial attacks and
developing methods to visualize and understand the internal
representations that are affected would provide valuable in-
sights into model behavior and help us develop more secure
architectures.
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